225 research outputs found

    The 3-D ionization structure and evolution of NGC 7009 (Saturn Nebula)

    Full text link
    Tomographic and 3-D analyses for extended, emission-line objects are applied to long-slit ESO NTT + EMMI high-resolution spectra of the intriguing planetary nebula NGC 7009, covered at twelve position angles. We derive the gas expansion law, the diagnostics and ionic radial profiles, the distance and the central star parameters, the nebular photo-ionization model and the spatial recovery of the plasma structure and evolution. The Saturn Nebula (distance~1.4 kpc, age~6000 yr, ionized mass~0.18 Mo) consists of several interconnected components, characterized by different morphology, physical conditions, excitation and kinematics. The internal shell, the main shell, the streams and the ansae expand at V(exp)~4.0xR" km/s, the outer shell, the caps and the equatorial pseudo-ring at V(exp)~3.15xR" km/s, and the halo at V(exp)~10 km/s. We compare the radial distribution of the physical conditions and the line fluxes observed in the eight sub-systems with the theoretical profiles coming from the photo-ionization code CLOUDY, inferring that all the spectral characteristics of NGC 7009 are explainable in terms of photo-ionization by the central star, a hot (logT*~4.95) and luminous (log L*/Lo~3.70) 0.60--0.61 Mo post--AGB star in the hydrogen-shell nuclear burning phase. The 3--D shaping of the Saturn Nebula is discussed within an evolutionary scenario dominated by photo-ionization and supported by the fast stellar wind: it begins with the superwind ejection, passes through the neutral, transition phase (lasting ~ 3000 yr), the ionization start (occurred ~2000 yr ago), and the full ionization of the main shell (~1000 yr ago), at last reaching the present days: the whole nebula is optically thin to the UV stellar flux, except the caps and the ansae.Comment: accepted for pub. in A&A, 28 pages, 14 figures, full text with figures available at http://web.pd.astro.it/supern/ps/h4665.ps, movies on the 3D structure available at http://web.pd.astro.it/sabbadin

    The gas turbulence in planetary nebulae: quantification and multi-D maps from long-slit, wide-spectral range echellogram

    Full text link
    This methodological paper is part of a short series dedicated to the long-standing astronomical problem of de-projecting the bi-dimensional, apparent morphology of a three-dimensional distribution of gas. We focus on the quantification and spatial recovery of turbulent motions in planetary nebulae (and other classes of expanding nebulae) by means of long-slit echellograms over a wide spectral range. We introduce some basic theoretical notions, discuss the observational methodology, and develop an accurate procedure disentangling all broadening components of the velocity profile in all spatial positions of each spectral image. This allows us to extract random, non-thermal motions at unprecedented accuracy, and to map them in 1-, 2- and 3-dimensions. We present the solution to practical problems in the multi-dimensional turbulence-analysis of a testing-planetary nebula (NGC 7009), using the three-step procedure (spatio-kinematics, tomography, and 3-D rendering) developed at the Astronomical Observatory of Padua. In addition, we introduce an observational paradigm valid for all spectroscopic parameters in all classes of expanding nebulae. Unsteady, chaotic motions at a local scale constitute a fundamental (although elusive) kinematical parameter of each planetary nebula, providing deep insights on its different shaping agents and mechanisms, and on their mutual interaction. The detailed study of turbulence, its stratification within a target and (possible) systematic variation among different sub-classes of planetary nebulae deserve long-slit, multi-position angle, wide-spectral range echellograms containing emissions at low-, medium-, and high-ionization, to be analyzed pixel-to-pixel with a straightforward and versatile methodology, extracting all the physical information stored in each frame at best.Comment: 11 page, 10 figures, A&A in pres

    3-D ionization structure (in stereoscopic view) of Planetary Nebulae: the case of NGC 1501

    Get PDF
    Long-slit echellograms of the high excitation planetary nebula NGC1501, reduced according to the methodology developed by Sabbadin et al. (2000a, b), allowed us to obtain the ``true'' distribution of the ionized gas in the eight nebular slices covered by the spectroscopic slit. A 3-D rendering procedure is described and applied, which assembles the tomographic maps and rebuilds the spatial structure. The images of NGC 1501, as seen in 12 directions separated by 15 deg, form a series of stereoscopic pairs giving surprising 3-D views in as many directions. The main nebula consists of an almost oblate ellipsoid of moderate ellipticity (a=44 arcsec, a/b=1.02, a/c=1.11), brighter in the equatorial belt, deformed by several bumps, and embedded in a quite homogeneous, inwards extended cocoon. Some reliability tests are applied to the rebuilt nebula; the radial matter profile, the small scale density fluctuations and the 2-D (morphology) - 3-D (structure) correlation are presented and analysed. The wide applications of the 3-D reconstruction to the morphology, physical conditions, ionization parameters and evolutionary status of expanding nebulae in general (planetary nebulae, nova and supernova remnants, shells around Population I Wolf-Rayet stars, nebulae ejected by symbiotic stars, bubbles surrounding early spectral type main sequence stars etc.) are introduced.Comment: 12 pages + 11 (gif) figures. Accepted for publication in A&A. A postscript file with figs. can be retrieved at http://panoramix.pd.astro.it/~sabbadi

    The Three-Dimensional Ionization Structure and Evolution of NGC 6720, The Ring Nebula

    Get PDF
    We have determined the gas kinematics, diagnostic and ionic radial profiles, spatial structure, and evolutionary phase of NGC 6720 (the Ring Nebula) by means of tomography and a three-dimensional recovery technique applied to long-slit high-resolution spectra. The main shell of the Ring Nebula is a triaxial ellipsoid (radii of 0.10, 0.13, and 0.20 pc) seen nearly pole-on and expanding in an approximately ballistic fashion (Vexp = 0.65 km s-1 arcsec-1). The central star characteristics [log(L*/L?) 2.3, T* 120,000 K], combined with the nebular age of 7000 yr, indicate that the M* 0.61-0.62 M? post-AGB star is approaching the white dwarf cooling sequence. The equator of the Ring Nebula is optically thick and much denser than the optically thin poles. The inner halo surrounding NGC 6720 represents the pole-on projection of the AGB wind at high latitudes (circumpolar) directly ionized by the central star, whereas the outer, fainter, and circular halo is the projection of the recombining AGB wind at mean to low latitudes, shadowed by the main nebula. The spatio-kinematical properties of the Ring Nebula and the origin of the dense knots commonly observed in late-stage planetary nebulae are critically compared with the predictions of radiation-hydrodynamic and wind interaction models

    Complexity results and algorithms for possibilistic influence diagrams

    Get PDF
    In this article we present the framework of Possibilistic Influence Diagrams (PID), which allows to model in a compact form problems of sequential decision making under uncertainty, when only ordinal data on transitions likelihood or preferences are available. The graphical part of a PID is exactly the same as that of usual influence diagrams, however the semantics differ. Transition likelihoods are expressed as possibility distributions and rewards are here considered as satisfaction degrees. Expected utility is then replaced by anyone of the two possibilistic qualitative utility criteria (optimistic and pessimistic) for evaluating strategies in a PID. We then describe decision tree-based methods for evaluating PID and computing optimal strategies and we study the computational complexity of PID optimisation problems for both cases. Finally, we propose a dedicated variable elimination algorithm that can be applied to both optimistic and pessimistic cases for solving PID

    Far-UV Spectroscopic Analyses of Four Central Stars of Planetary Nebulae

    Full text link
    We analyze the Far-UV/UV spectra of four central stars of planetary nebulae with strong wind features -- NGC 2371, Abell 78, IC 4776 and NGC 1535, and derive their photospheric and wind parameters by modeling high-resolution FUSE (Far-Ultraviolet Spectroscopic Explorer) data in the Far-UV and HST-STIS and IUE data in the UV with spherical non-LTE line-blanketed model atmospheres. Abell 78 is a hydrogen-deficient transitional [WR]-PG 1159 object, and we find NGC 2371 to be in the same stage, both migrating from the constant-luminosity phase to the white dwarf cooling sequence with Teff ~= 120 kK, Mdot ~= 5x10^-8 Msun/yr. NGC 1535 is a ``hydrogen-rich'' O(H) CSPN, and the exact nature of IC 4776 is ambiguous, although it appears to be helium burning. Both objects lie on the constant-luminosity branch of post-AGB evolution and have Teff ~= 65 kK, Mdot ~= 1x10^-8 Msun/yr. Thus, both the H-rich and H-deficient channels of PN evolution are represented in our sample. We also investigate the effects of including higher ionization stages of iron (up to FeX) in the model atmosphere calculations of these hot objects (usually neglected in previous analyses), and find iron to be a useful diagnostic of the stellar parameters in some cases. The Far-UV spectra of all four objects show evidence of hot (T ~ 300 K) molecular hydrogen in their circumstellar environments.Comment: 38 pages, 8 figures (6 color). Accepted for publication in Ap

    Implementing the “Best Template Searching” tool into Adenosiland platform

    Get PDF
    Background: Adenosine receptors (ARs) belong to the G protein-coupled receptors (GCPRs) family. The recent release of X-ray structures of the human A2A AR (h A2A AR ) in complex with agonists and antagonists has increased the application of structure-based drug design approaches to this class of receptors. Among them, homology modeling represents the method of choice to gather structural information on the other receptor subtypes, namely A1, A2B, and A3 ARs. With the aim of helping users in the selection of either a template to build its own models or ARs homology models publicly available on our platform, we implemented our web-resource dedicated to ARs, Adenosiland, with the “Best Template Searching” facility. This tool is freely accessible at the following web address: http://mms.dsfarm.unipd.it/Adenosiland/ligand.php. Findings: The template suggestions and homology models provided by the “Best Template Searching” tool are guided by the similarity of a query structure (putative or known ARs ligand) with all ligands co-crystallized with hA2A AR subtype. The tool computes several similarity indexes and sort the outcoming results according to the index selected by the user. Conclusions: We have implemented our web-resource dedicated to ARs Adenosiland with the “Best Template Searching” facility, a tool to guide template and models selection for hARs modelling. The underlying idea of our new facility, that is the selection of a template (or models built upon a template) whose co-crystallized ligand shares the highest similarity with the query structure, can be easily extended to other GPCRs

    Tangential Motions and Spectroscopy within NGC 6720, the Ring Nebula

    Full text link
    We have combined recent Hubble Space Telescope WFPC2 images in the [O III] 5007 and [N II] 6583 lines with similar images made 9.557 years earlier to determine the motion of the Ring Nebula within the plane of the sky. Scaled ratio images argue for homologous expansion, that is, larger velocities scale with increasing distance from the central star. The rather noisy pattern of motion of individual features argues for the same conclusion and that the silhouetted knots move at the same rate as the surrounding gas. These tangential velocities are combined with information from a recent high resolution radial velocity study to determine a dynamic distance, which is in basic agreement with the distance determined from the parallax of the central star. We have also obtained very high signal to noise ratio moderate resolution spectra (9.4 Angstrom) along the major and minor axes of the nebula and from this determined the electron temperatures and density in the multiple ionization zones present. These results confirm the status of the Ring Nebula as one of the older planetary nebulae, with a central star transitioning to the white dwarf cooling curve. (Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA Contract No. NAS 5-26555 and the San Pedro Martir Observatory operated by the Universidad Nacional Autonoma de Mexico.)Comment: Astronomical Journal, in pres

    Observational Study of the Multistructured Planetary Nebula NGC 7354

    Full text link
    We present an observational study of the planetary nebula (PN) NGC 7354 consisting of narrowband Halpha and [NII]6584 imaging as well as low- and high-dispersion long-slit spectroscopy and VLA-D radio continuum. According to our imaging and spectroscopic data, NGC 7354 has four main structures: a quite round outer shell and an elliptical inner shell, a collection of low-excitation bright knots roughly concentrated on the equatorial region of the nebula, and two symmetrical jet-like features, not aligned either with the shells' axes, or with each other. We have obtained physical parameters like electron temperature and electron density as well as ionic and elemental abundances for these different structures. Electron temperature and electron density slightly vary throughout the nebula. The local extinction coefficient c_Hbeta shows an increasing gradient from south to north and a decreasing gradient from east to west consistent with the number of equatorial bright knots present in each direction. Abundance values show slight internal variations but most of them are within the estimated uncertainties. In general, abundance values are in good agreement with the ones expected for PNe. Radio continuum data are consistent with optically thin thermal emission. We have used the interactive three-dimensional modeling tool SHAPE to reproduce the observed morphokinematic structures in NGC 7354 with different geometrical components. Our SHAPE model is in very good agreement with our imaging and spectroscopic observations. Finally, after modeling NGC 7354 with SHAPE, we suggest a possible scenario for the formation of the nebula.Comment: Accepted for publication in AJ, 12 pages, 8 figure

    The 3-D shaping of NGC 6741: a massive, fast-evolving Planetary Nebula at the recombination--reionization edge

    Full text link
    We infer the gas kinematics, diagnostics and ionic radial profiles, distance and central star parameters, nebular photo- ionization model, spatial structure and evolutionary phase of the PN NGC 6741 by means of long-slit high-resolution spectra at nine position angles. NGC 6741 (distance ~2.0 kpc, age ~1400 yr, ionized mass Mion ~0.06 Mo) is a dense (electron density up to 12,000 cm^(-3)), high-excitation, almost- prolate ellipsoid, surrounded by a sharp low-excitation skin (the ionization front), and embedded into a spherical (radius ~ 0.080 pc), almost-neutral, high-density (n(HI) ~7 x 10^3 atoms cm^(-3)) halo containing a large fraction of the nebular mass (Mhalo>0.20 Mo). The kinematics, physical conditions and ionic structure indicate that NGC 6741 is in a deep recombination phase, started about 200 years ago, and caused by the quick luminosity drop of the massive (M*=0.66-0.68 Mo), hot (logT* ~ 5.23) and faint (log L*/Lo ~ 2.75) post--AGB star, which has exhausted the hydrogen-shell nuclear burning and is moving along the white dwarf cooling sequence. The general expansion law of the ionized gas in NGC 6741, Vexp (km s^(-1)=13 x R", fails in the innermost, highest-excitation layers, which move slower than expected. The observed deceleration is ascribable to the luminosity drop of the central star, and appears in striking contrast to recent reports inferring that acceleration is a common property of the Planetary Nebulae innermost layers. Some general implications on the shaping mechanisms of Planetary Nebulae are discussed.Comment: 27 pages, 18 figures, accepted for publication in A&A, movies of the reconstructed nebula are available at http://web.pd.astro.it/sabbadin
    • …
    corecore